Метод скользящей средней в Microsoft Excel

Метод скользящей средней – это статистический инструмент, с помощью которого можно решать различного рода задачи. В частности, он довольно часто используется при прогнозировании. В программе Excel для решения целого ряда задач также можно применять данный инструмент. Давайте разберемся, как используется скользящая средняя в Экселе.

Применение скользящей средней

Смысл данного метода состоит в том, что с его помощью происходит смена абсолютных динамических значений выбранного ряда на средние арифметические за определенный период путем сглаживания данных. Этот инструмент применяется для экономических расчетов, прогнозирования, в процессе торговли на бирже и т.д. Применять метод скользящей средней в Экселе лучше всего с помощью мощнейшего инструмента статистической обработки данных, который называется . Кроме того, в этих же целях можно использовать встроенную функцию Excel .

Способ 1: Пакет анализа

представляет собой надстройку Excel, которая по умолчанию отключена. Поэтому, прежде всего, требуется её включить.

  1. Перемещаемся во вкладку . Делаем щелчок по пункту .
  2. В запустившемся окне параметров следует перейти в раздел . В нижней части окна в поле должен быть выставлен параметр . Щелкаем по кнопке .
  3. Мы попадаем в окно надстроек. Устанавливаем галочку около пункта и щелкаем по кнопке .

После этого действия пакет активирован, и соответствующая кнопка появилась на ленте во вкладке .

А теперь давайте рассмотрим, как непосредственно можно использовать возможности пакета для работы по методу скользящей средней. Давайте на основе информации о доходе фирмы за 11 предыдущих периодов составим прогноз на двенадцатый месяц. Для этого воспользуемся заполненной данными таблицей, а также инструментами .

  1. Переходим во вкладку и жмем на кнопку , которая размещена на ленте инструментов в блоке .
  2. Открывается перечень инструментов, которые доступны в . Выбираем из них наименование и жмем на кнопку .
  3. Запускается окно ввода данных для прогнозирования методом скользящей средней.

    В поле указываем адрес диапазона, где расположена помесячно сумма выручки без ячейки, данные в которой следует рассчитать.

    В поле следует указать интервал обработки значений методом сглаживания. Для начала давайте установим значение сглаживания в три месяца, а поэтому вписываем цифру .

    В поле нужно указать произвольный пустой диапазон на листе, где будут выводиться данные после их обработки, который должен быть на одну ячейку больше входного интервала.

    Также следует установить галочку около параметра .

    При необходимости, можно также установить галочку около пункта для визуальной демонстрации, хотя в нашем случае это и не обязательно.

    После того, как все настройки внесены, жмем на кнопку .

  4. Программа выводит результат обработки.
  5. Теперь выполним сглаживание за период в два месяца, чтобы выявить, какой результат является более корректным. Для этих целей опять запускаем инструмент .

    В поле оставляем те же значения, что и в предыдущем случае.

    В поле ставим цифру .

    В поле указываем адрес нового пустого диапазона, который, опять же, должен быть на одну ячейку больше входного интервала.

    Остальные настройки оставляем прежними. После этого жмем на кнопку .

  6. Вслед за этим программа производит расчет и выводит результат на экран. Для того, чтобы определить, какая из двух моделей более точная, нам нужно сравнить стандартные погрешности. Чем меньше данный показатель, тем выше вероятность точности полученного результата. Как видим, по всем значениям стандартная погрешность при расчете двухмесячной скользящей меньше, чем аналогичный показатель за 3 месяца. Таким образом, прогнозируемым значением на декабрь можно считать величину, рассчитанную методом скольжения за последний период. В нашем случае это значение 990,4 тыс. рублей.

Способ 2: использование функции СРЗНАЧ

В Экселе существует ещё один способ применения метода скользящей средней. Для его использования требуется применить целый ряд стандартных функций программы, базовой из которых для нашей цели является . Для примера мы будем использовать все ту же таблицу доходов предприятия, что и в первом случае.

Как и в прошлый раз, нам нужно будет создать сглаженные временные ряды. Но на этот раз действия будут не настолько автоматизированы. Следует рассчитать среднее значение за каждые два, а потом три месяца, чтобы иметь возможность сравнить результаты.

Прежде всего, рассчитаем средние значения за два предыдущих периода с помощью функции . Сделать это мы можем, только начиная с марта, так как для более поздних дат идет обрыв значений.

  1. Выделяем ячейку в пустой колонке в строке за март. Далее жмем на значок , который размещен вблизи строки формул.
  2. Активируется окно . В категории ищем значение , выделяем его и щелкаем по кнопке .
  3. Запускается окно аргументов оператора . Синтаксис у него следующий:

    =СРЗНАЧ(число1;число2;…)

    Обязательным является только один аргумент.

    В нашем случае, в поле мы должны указать ссылку на диапазон, где указан доход за два предыдущих периода (январь и февраль). Устанавливаем курсор в поле и выделяем соответствующие ячейки на листе в столбце . После этого жмем на кнопку .

  4. Как видим, результат расчета среднего значения за два предыдущих периода отобразился в ячейке. Для того, чтобы выполнить подобные вычисления для всех остальных месяцев периода, нам нужно скопировать данную формулу в другие ячейки. Для этого становимся курсором в нижний правый угол ячейки, содержащей функцию. Курсор преобразуется в маркер заполнения, который имеет вид крестика. Зажимаем левую кнопку мыши и протягиваем его вниз до самого конца столбца.
  5. Получаем расчет результатов среднего значения за два предыдущих месяца до конца года.
  6. Теперь выделяем ячейку в следующем пустом столбце в строке за апрель. Вызываем окно аргументов функции тем же способом, который был описан ранее. В поле вписываем координаты ячеек в столбце с января по март. Затем жмем на кнопку .
  7. С помощью маркера заполнения копируем формулу в ячейки таблицы, расположенные ниже.
  8. Итак, значения мы подсчитали. Теперь, как и в предыдущий раз, нам нужно будет выяснить, какой вид анализа более качественный: со сглаживанием в 2 или в 3 месяца. Для этого следует рассчитать среднее квадратичное отклонение и некоторые другие показатели. Для начала рассчитаем абсолютное отклонение, воспользовавшись стандартной функцией Excel , которая вместо положительных или отрицательных чисел возвращает их модуль. Данное значение будет равно разности между реальным показателем выручки за выбранный месяц и прогнозируемым. Устанавливаем курсор в следующий пустой столбец в строку за май. Вызываем .
  9. В категории выделяем наименование функции . Жмем на кнопку .
  10. Запускается окно аргументов функции . В единственном поле указываем разность между содержимым ячеек в столбцах и за май. Затем жмем на кнопку .
  11. С помощью маркера заполнений копируем данную формулу во все строки таблицы по ноябрь включительно.
  12. Рассчитываем среднее значение абсолютного отклонения за весь период с помощью уже знакомой нам функции .
  13. Аналогичную процедуру выполняем и для того, чтобы подсчитать абсолютное отклонение для скользящей за 3 месяца. Сначала применяем функцию . Только на этот раз считаем разницу между содержимым ячеек с фактическим доходом и плановым, рассчитанным по методу скользящей средней за 3 месяца.
  14. Далее рассчитываем среднее значение всех данных абсолютного отклонения с помощью функции .
  15. Следующим шагом является подсчет относительного отклонения. Оно равно отношению абсолютного отклонения к фактическому показателю. Для того чтобы избежать отрицательных значений, мы опять воспользуемся теми возможностями, которые предлагает оператор . На этот раз с помощью данной функции делим значение абсолютного отклонения при использовании метода скользящей средней за 2 месяца на фактический доход за выбранный месяц.
  16. Но относительное отклонение принято отображать в процентном виде. Поэтому выделяем соответствующий диапазон на листе, переходим во вкладку , где в блоке инструментов в специальном поле форматирования выставляем процентный формат. После этого результат подсчета относительного отклонения отображается в процентах.
  17. Аналогичную операцию по подсчету относительного отклонения проделываем и с данными с применением сглаживания за 3 месяца. Только в этом случае для расчета в качестве делимого используем другой столбец таблицы, который у нас имеет название . Затем переводим числовые значения в процентный вид.
  18. После этого высчитываем средние значения для обеих колонок с относительным отклонением, как и ранее используя для этого функцию . Так как для расчета в качестве аргументов функции мы берем процентные величины, то дополнительную конвертацию производить не нужно. Оператор на выходе выдает результат уже в процентном формате.
  19. Теперь мы подошли к расчету среднего квадратичного отклонения. Этот показатель позволит нам непосредственно сравнить качество расчета при использовании сглаживания за два и за три месяца. В нашем случае среднее квадратичное отклонение будет равно корню квадратному из суммы квадратов разностей фактической выручки и скользящей средней, деленной на количество месяцев. Для того, чтобы произвести расчет в программе, нам предстоит воспользоваться целым рядом функций, в частности , и . Например, для расчета среднего квадратичного отклонения при использовании линии сглаживания за два месяца в мае будет в нашем случае применяться формула следующего вида:

    =КОРЕНЬ(СУММКВРАЗН(B6:B12;C6:C12)/СЧЁТ(B6:B12))

    Копируем её в другие ячейки столбца с расчетом среднего квадратичного отклонения посредством маркера заполнения.

  20. Аналогичную операцию по расчету среднего квадратичного отклонения выполняем и для скользящей средней за 3 месяца.
  21. После этого рассчитываем среднее значение за весь период для обоих этих показателей, применив функцию .
  22. Произведя сравнение расчетов методом скользящей средней со сглаживанием в 2 и 3 месяца по таким показателям, как абсолютное отклонение, относительное отклонение и среднеквадратичное отклонение, можно с уверенностью сказать, что сглаживание за два месяца дает более достоверные результаты, чем применение сглаживания за три месяца. Об этом говорит то, что вышеуказанные показатели по двухмесячному скользящему среднему, меньше, чем по трехмесячному.
  23. Таким образом, прогнозируемый показатель дохода предприятия за декабрь составит 990,4 тыс. рублей. Как видим, это значение полностью совпадает с тем, которое мы получили, производя расчет с помощью инструментов .

Мы произвели расчет прогноза при помощи метода скользящей средней двумя способами. Как видим, данную процедуру намного проще выполнить с помощью инструментов . Тем не менее некоторые пользователи не всегда доверяют автоматическому расчету и предпочитают для вычислений использовать функцию и сопутствующие операторы для проверки наиболее достоверного варианта. Хотя, если все сделано правильно, на выходе результат расчетов должен получиться полностью одинаковым.

Мы рады, что смогли помочь Вам в решении проблемы.
Помимо этой статьи, на сайте еще 13048 полезных инструкций.
Добавьте сайт Lumpics.ru в закладки (CTRL+D) и мы точно еще пригодимся вам. Опишите, что у вас не получилось. Наши специалисты постараются ответить максимально быстро.

Источник: starhit
Читайте также  Устанавливаем ПО для AMD Radeon HD 6570

Домашние хитрости