Расчет коэффициента детерминации в Microsoft Excel

Одним из показателей, описывающих качество построенной модели в статистике, является коэффициент детерминации (R^2), который ещё называют величиной достоверности аппроксимации. С его помощью можно определить уровень точности прогноза. Давайте узнаем, как можно произвести расчет данного показателя с помощью различных инструментов программы Excel.

Вычисление коэффициента детерминации

В зависимости от уровня коэффициента детерминации, принято разделять модели на три группы:

  • 0,8 – 1 — модель хорошего качества;
  • 0,5 – 0,8 — модель приемлемого качества;
  • 0 – 0,5 — модель плохого качества.

В последнем случае качество модели говорит о невозможности её использования для прогноза.

Выбор способа вычисления указанного значения в Excel зависит от того, является ли регрессия линейной или нет. В первом случае можно использовать функцию , а во втором придется воспользоваться специальным инструментом из пакета анализа.

Способ 1: вычисление коэффициента детерминации при линейной функции

Прежде всего, выясним, как найти коэффициент детерминации при линейной функции. В этом случае данный показатель будет равняться квадрату коэффициента корреляции. Произведем его расчет с помощью встроенной функции Excel на примере конкретной таблицы, которая приведена ниже.

  1. Выделяем ячейку, где будет произведен вывод коэффициента детерминации после его расчета, и щелкаем по пиктограмме .
  2. Запускается . Перемещаемся в его категорию и отмечаем наименование . Далее клацаем по кнопке .
  3. Происходит запуск окна аргументов функции . Данный оператор из статистической группы предназначен для вычисления квадрата коэффициента корреляции функции Пирсона, то есть, линейной функции. А как мы помним, при линейной функции коэффициент детерминации как раз равен квадрату коэффициента корреляции.

    Синтаксис этого оператора такой:

    =КВПИРСОН(известные_значения_y;известные_значения_x)

    Таким образом, функция имеет два оператора, один из которых представляет собой перечень значений функции, а второй – аргументов. Операторы могут быть представлены, как непосредственно в виде значений, перечисленных через точку с запятой (), так и в виде ссылок на диапазоны, где они расположены. Именно последний вариант и будет использован нами в данном примере.

    Устанавливаем курсор в поле . Выполняем зажим левой кнопки мышки и производим выделение содержимого столбца таблицы. Как видим, адрес указанного массива данных тут же отображается в окне.

    Аналогичным образом заполняем поле . Ставим курсор в данное поле, но на этот раз выделяем значения столбца .

    После того, как все данные были отображены в окне аргументов , клацаем по кнопке , расположенной в самом его низу.

  4. Как видим, вслед за этим программа производит расчет коэффициента детерминации и выдает результат в ту ячейку, которая была выделена ещё перед вызовом . В нашем примере значение вычисляемого показателя получилось равным 1. Это значит, что представленная модель абсолютно достоверная, то есть, исключает погрешность.

Урок: Мастер функций в Microsoft Excel

Способ 2: вычисление коэффициента детерминации в нелинейных функциях

Но указанный выше вариант расчета искомого значения можно применять только к линейным функциям. Что же делать, чтобы произвести его расчет в нелинейной функции? В Экселе имеется и такая возможность. Её можно осуществить с помощью инструмента , который является составной частью пакета .

  1. Но прежде, чем воспользоваться указанным инструментом, следует активировать сам , который по умолчанию в Экселе отключен. Перемещаемся во вкладку , а затем переходим по пункту .
  2. В открывшемся окне производим перемещение в раздел при помощи навигации по левому вертикальному меню. В нижней части правой области окна располагается поле . Из списка доступных там подразделов выбираем наименование , а затем щелкаем по кнопке , расположенной справа от поля.
  3. Производится запуск окна надстроек. В центральной его части расположен список доступных надстроек. Устанавливаем флажок около позиции . Вслед за этим требуется щелкнуть по кнопке в правой части интерфейса окна.
  4. Пакет инструментов в текущем экземпляре Excel будет активирован. Доступ к нему располагается на ленте во вкладке . Перемещаемся в указанную вкладку и клацаем по кнопке в группе настроек .
  5. Активируется окошко со списком профильных инструментов обработки информации. Выделяем из этого перечня пункт и клацаем по кнопке .
  6. Затем открывается окно инструмента . Первый блок настроек – . Тут в двух полях нужно указать адреса диапазонов, где находятся значения аргумента и функции. Ставим курсор в поле и выделяем на листе содержимое колонки . После того, как адрес массива отобразился в окне , ставим курсор в поле и точно таким же образом выделяем ячейки столбца .

    Около параметров и флажки не ставим. Флажок можно установить около параметра и в поле напротив указать желаемую величину соответствующего показателя (по умолчанию 95%).

    В группе нужно указать, в какой области будет отображаться результат вычисления. Существует три варианта:

    • Область на текущем листе;
    • Другой лист;
    • Другая книга (новый файл).

    Остановим свой выбор на первом варианте, чтобы исходные данные и результат размещались на одном рабочем листе. Ставим переключатель около параметра . В поле напротив данного пункта ставим курсор. Щелкаем левой кнопкой мыши по пустому элементу на листе, который призван стать левой верхней ячейкой таблицы вывода итогов расчета. Адрес данного элемента должен высветиться в поле окна .

    Группы параметров и игнорируем, так как для решения поставленной задачи они не важны. После этого клацаем по кнопке , которая размещена в правом верхнем углу окна .

  7. Программа производит расчет на основе ранее введенных данных и выводит результат в указанный диапазон. Как видим, данный инструмент выводит на лист довольно большое количество результатов по различным параметрам. Но в контексте текущего урока нас интересует показатель . В данном случае он равен 0,947664, что характеризует выбранную модель, как модель хорошего качества.

Способ 3: коэффициент детерминации для линии тренда

Кроме указанных выше вариантов, коэффициент детерминации можно отобразить непосредственно для линии тренда в графике, построенном на листе Excel. Выясним, как это можно сделать на конкретном примере.

  1. Мы имеем график, построенный на основе таблицы аргументов и значений функции, которая была использована для предыдущего примера. Произведем построение к нему линии тренда. Кликаем по любому месту области построения, на которой размещен график, левой кнопкой мыши. При этом на ленте появляется дополнительный набор вкладок – . Переходим во вкладку . Клацаем по кнопке , которая размещена в блоке инструментов . Появляется меню с выбором типа линии тренда. Останавливаем выбор на том типе, который соответствует конкретной задаче. Давайте для нашего примера выберем вариант .
  2. Эксель строит прямо на плоскости построения графика линию тренда в виде дополнительной черной кривой.
  3. Теперь нашей задачей является отобразить собственно коэффициент детерминации. Кликаем правой кнопкой мыши по линии тренда. Активируется контекстное меню. Останавливаем выбор в нем на пункте .

    Для выполнения перехода в окно формата линии тренда можно выполнить альтернативное действие. Выделяем линию тренда кликом по ней левой кнопки мыши. Перемещаемся во вкладку . Клацаем по кнопке в блоке . В открывшемся списке клацаем по самому последнему пункту перечня действий – .

  4. После любого из двух вышеуказанных действий запускается окошко формата, в котором можно произвести дополнительные настройки. В частности, для выполнения нашей задачи необходимо установить флажок напротив пункта . Он размещен в самом низу окна. То есть, таким образом мы включаем отображение коэффициента детерминации на области построения. Затем не забываем нажать на кнопку внизу текущего окна.
  5. Значение достоверности аппроксимации, то есть, величина коэффициента детерминации, будет отображено на листе в области построения. В данном случае эта величина, как видим, равна 0,9242, что характеризует аппроксимацию, как модель хорошего качества.
  6. Абсолютно точно таким образом можно устанавливать показ коэффициента детерминации для любого другого типа линии тренда. Можно менять тип линии тренда, произведя переход через кнопку на ленте или контекстное меню в окно её параметров, как было показано выше. Затем уже в самом окне в группе можно переключиться на другой тип. Не забываем при этом контролировать, чтобы около пункта был установлен флажок. Завершив вышеуказанные действия, щелкаем по кнопке в нижнем правом углу окна.
  7. При линейном типе линия тренда уже имеет значение достоверности аппроксимации равное 0,9477, что характеризует эту модель, как ещё более достоверную, чем рассматриваемую нами ранее линию тренда экспоненциального типа.
  8. Таким образом, переключаясь между разными типами линии тренда и сравнивая их значения достоверности аппроксимации (коэффициент детерминации), можно найти тот вариант, модель которого наиболее точно описывает представленный график. Вариант с самым высоким показателем коэффициента детерминации будет наиболее достоверным. На его основе можно строить самый точный прогноз.

    Например, для нашего случая опытным путем удалось установить, что самый высокий уровень достоверности имеет полиномиальный тип линии тренда второй степени. Коэффициент детерминации в данном случае равен 1. Это говорит о том, что указанная модель абсолютно достоверная, что означает полное исключение погрешностей.

    Но, в то же время, это совсем не значит, что для другого графика тоже наиболее достоверным окажется именно этот тип линии тренда. Оптимальный выбор типа линии тренда зависит от типа функции, на основании которой был построен график. Если пользователь не обладает достаточным объемом знаний, чтобы «на глаз» прикинуть наиболее качественный вариант, то единственным выходом определения лучшего прогноза является как раз сравнение коэффициентов детерминации, как было показано на примере выше.

Аппроксимация в Excel

В Экселе существуют два основных варианта вычисления коэффициента детерминации: использование оператора и применение инструмента из пакета инструментов . При этом первый из этих вариантов предназначен для использования только в процессе обработки линейной функции, а другой вариант можно использовать практически во всех ситуациях. Кроме того, существует возможность отображения коэффициента детерминации для линии трендов графиков в качестве величины достоверности аппроксимации. С помощью данного показателя имеется возможность определить тип линии тренда, который располагает самым высоким уровнем достоверности для конкретной функции.

Мы рады, что смогли помочь Вам в решении проблемы.
Помимо этой статьи, на сайте еще 13048 полезных инструкций.
Добавьте сайт Lumpics.ru в закладки (CTRL+D) и мы точно еще пригодимся вам. Опишите, что у вас не получилось. Наши специалисты постараются ответить максимально быстро.

Источник: starhit
Читайте также  SHAREIt для Android

Домашние хитрости